Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
BMC Cancer ; 23(1): 969, 2023 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-37828461

RESUMO

AIM: This study aimed to explore whether the addition of sarcopenia and visceral adiposity could improve the accuracy of model predicting progression-free survival (PFS) in hepatocellular carcinoma (HCC). METHODS: In total, 394 patients with HCC from five hospitals were divided into the training and external validation datasets. Patients were initially treated by liver resection or transarterial chemoembolization. We evaluated adipose and skeletal muscle using preoperative computed tomography imaging and then constructed three predictive models, including metabolic (ModelMA), clinical-imaging (ModelCI), and combined (ModelMA-CI) models. Their discrimination, calibration, and decision curves were compared, to identify the best model. Nomogram and subgroup analysis was performed for the best model. RESULTS: ModelMA-CI containing sarcopenia and visceral adiposity had good discrimination and calibrations (integrate area under the curve for PFS was 0.708 in the training dataset and 0.706 in the validation dataset). ModelMA-CI had better accuracy than ModelCI and ModelMA. The performance of ModelMA-CI was not affected by treatments or disease stages. The high-risk subgroup (scored > 198) had a significantly shorter PFS (p < 0.001) and poorer OS (p < 0.001). CONCLUSIONS: The addition of sarcopenia and visceral adiposity improved accuracy in predicting PFS in HCC, which may provide additional insights in prognosis for HCC in subsequent studies.


Assuntos
Carcinoma Hepatocelular , Quimioembolização Terapêutica , Neoplasias Hepáticas , Sarcopenia , Humanos , Carcinoma Hepatocelular/diagnóstico por imagem , Carcinoma Hepatocelular/terapia , Carcinoma Hepatocelular/patologia , Sarcopenia/diagnóstico por imagem , Sarcopenia/etiologia , Neoplasias Hepáticas/diagnóstico por imagem , Neoplasias Hepáticas/terapia , Neoplasias Hepáticas/patologia , Adiposidade , Quimioembolização Terapêutica/métodos , Prognóstico , Nomogramas , Estudos Retrospectivos
2.
Oncol Lett ; 25(6): 260, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37205919

RESUMO

1,4,5,6,7,8-Hexahydropyrido[4,3-d]pyrimidine (PPM) promotes apoptosis of HepG2 cells and serves a role in tumor suppression. However, the role of microRNA (miRNA) regulation in initiating apoptosis remains unclear. Therefore, the present study performed reverse transcription-quantitative PCR to investigate the association between PPM and miRNA, which demonstrated that PPM upregulated the expression of miR-26b-5p. Wound healing and Transwell assays showed that PPM inhibited the migration and invasion of HepG2 cells, and EdU staining experiments showed that PPM inhibited the proliferation of HepG2 cells. Transfection with miR-26b-5p inhibitor reversed the effects of PPM on HepG2 cells. Flow cytometry results showed that PPM promoted apoptosis of HepG2 cells by upregulating miRNA (miR)-26b-5p, and Western blotting results showed that PPM promoted the expression of apoptosis-associated protein Bax and inhibited the expression of Bcl-2 by upregulating miR-26b-5p. Using a proteomic approach combined with bioinformatics analysis, CDK8 was identified as a potential target of miR-26b-5p and was downregulated by miR-26b-5p overexpression. However, PPM induced HepG2 cell cycle arrest without the involvement of miR-26b-5p. Western blotting results showed that PPM upregulation of miR-26b-5p suppresses NF-κB/p65 signaling pathway in HepG2 cells by targeting of CDK8. The present results suggested that miR-26b-5p may function as a target gene of PPM and may serve a role in hepatocellular carcinoma treatment.

3.
Environ Toxicol Pharmacol ; 90: 103794, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-34971797

RESUMO

Many studies have shown that aflatoxin B1 (AFB1) can cause cytotoxicity in numerous cells and organs induced by oxidative stress. However, the toxic effects and related mechanism of AFB1 on the microglia cells in the spinal cords have not been studied yet. Our results showed that AFB1 significantly reduced the number of microglia cells, increased the oxidants (malonaldehyde and hydrogen peroxide) but decreased the anti-oxidants (superoxide dismutase and total antioxidant capacity) in a dose dependent manner in mice spinal cords. In addition, AFB1 significantly increased the oxidative stress, promoted apoptosis and cell cycle arrest in G2-M phase, and activated NF-κB phosphorylation in BV2 microglia cells. However, the addition of active oxygen scavenger N-acetylcysteine can significantly reduce the ROS production, improve cell cycle arrest, reduce apoptosis, and the expression of phosphorylated NF-κB in BV2 microglia cells. These results indicate that AFB1 induces microglia cells apoptosis through oxidative stress by activating NF-κB signaling pathway.


Assuntos
Aflatoxina B1/toxicidade , Apoptose/efeitos dos fármacos , Microglia/efeitos dos fármacos , Acetilcisteína/administração & dosagem , Animais , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Células Cultivadas , Masculino , Camundongos , NF-kappa B/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Fosforilação , Espécies Reativas de Oxigênio/metabolismo , Transdução de Sinais , Medula Espinal/efeitos dos fármacos
4.
Eur J Med Chem ; 225: 113796, 2021 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-34450496

RESUMO

In order to obtain new anti-hepatoma drugs with low toxicity, some 1,4,5,6,7,8-hexahydropyrido[4,3-d]pyrimidines (PPMs, 4a-t) were synthesized in this study. Many of them showed significant anti-hepatoma effects against HCC cells and low toxicity toward HHL-5 cells. Combined with their anti-hepatoma activity and toxicity, 4-CF3-substituted 4k was selected as an effective lead compound. Preliminary mechanistic studies revealed that 4k could up-regulate the expression levels of Bax and caspase-3 proteins, down-regulate the expression levels of Bcl-2 protein, promote significant apoptosis of HepG2, and block cells in G2-M phase to prevent cells from completing mitosis. Also, 4k could significantly inhibit the activation of PI3K/AKT/NF-κB pathway by blocking the phosphorylation of PI3K, AKT, NF-κB/p65 and IFN-γ-induced nuclear transport. Docking analysis showed that 4k could reasonably bind to the active sites of Bcl-2, NF-κB/p65, PI3K and AKT. This result suggested that 4k could be used as a new type of NF-κB inhibitor, which provides a scientific basis for further research into the treatment of hepatoma.


Assuntos
Antineoplásicos/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Descoberta de Drogas , Neoplasias Hepáticas/tratamento farmacológico , NF-kappa B/antagonistas & inibidores , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Antineoplásicos/síntese química , Antineoplásicos/química , Apoptose/efeitos dos fármacos , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Ciclo Celular/efeitos dos fármacos , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Relação Dose-Resposta a Droga , Ensaios de Seleção de Medicamentos Antitumorais , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Estrutura Molecular , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Relação Estrutura-Atividade
5.
Biomed Pharmacother ; 136: 111227, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33485070

RESUMO

Hydroxysafflor yellow A (HSYA) extracted from the herb Cathartics tinctorius L. negatively regulates liver cancer growth. However, the exact mechanism of HSYA action in liver cancer remains largely unknown. In this study, HSYA inhibited liver cancer cell growth in vivo and in vitro, evidenced by cell proliferation inhibition detected by CCK8, numerous apoptotic cells shown by flow cytometry assay, and expression of apoptosis-related proteins determined by western blot. Importantly, our data revealed that HSYA triggered autophagic response and autophagosome accumulation considering the increased levels of LC3II-conversion examined by western blot, LC3 puncta visualized by immunofluorescence, and expression of autophagy-related genes shown by quantitative real-time PCR. Furthermore, HSYA blocked the late-phase of autophagic flux via impairing the lysosomal acidification and downregulating LAMP1 expression, thereby likely inducing apoptosis. In addition, HSYA inhibited PI3K/AKT/mTOR signaling pathway. Taken together, as HSYA might inhibit cell proliferation and promote apoptosis via blocking autophagic flux in liver cancer, it may be considered a promising candidate for liver cancer therapy.


Assuntos
Antineoplásicos Fitogênicos/farmacologia , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Chalcona/análogos & derivados , Neoplasias Hepáticas/tratamento farmacológico , Quinonas/farmacologia , Autofagossomos/efeitos dos fármacos , Autofagossomos/metabolismo , Autofagossomos/patologia , Proliferação de Células/efeitos dos fármacos , Chalcona/farmacologia , Células Hep G2 , Humanos , Concentração de Íons de Hidrogênio , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Lisossomos/patologia , Proteínas Associadas aos Microtúbulos/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais , Serina-Treonina Quinases TOR/metabolismo
6.
ACS Appl Mater Interfaces ; 7(45): 25121-8, 2015 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-26488595

RESUMO

Mesoporous ATO nanocrystalline electrodes of micrometer thicknesses have been prepared from ATO nanocrystals and the grafted copolymer templating agents poly vinyl chloride-g-poly(oxyethylene methacrylate). As-obtained electrodes have high interfacial surface areas, large pore volumes, and rapid intraoxide electron transfer. The resulting high surface area materials are useful substrates for electrochemically catalyzed water oxidation. With thin added shells of TiO2 deposited by atomic layer deposition (ALD) and a surface-bound Ru(II) polypyridyl chromophore, they become photoanodes for hydrogen generation in the presence of a reductive scavenger.

7.
Dalton Trans ; 44(18): 8640-8, 2015 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-25855221

RESUMO

A Ru(II) polypyridyl-derivatized polypropylacrylate end-capped with a water-oxidation-catalyst (WOC) has been synthesized by using reversible addition-fragmentation chain transfer polymerization (RAFT) followed by click reaction and end-group functionalization. In cyclic voltammograms in propylene carbonate, chromophore oxidation occurs at 1.27 V vs. NHE and the Ru(III/II) wave for the catalyst at 0.84 V vs. NHE. Upon excitation of the Ru(II) chromophore, excited-state energy migration occurs by site-to-site, -Ru(II)*- → -Ru(II)-, energy transfer hopping along the polymer chain, in part, reaching the terminal catalyst site where -Ru(II)*- → -Ru(II)-OH2(2+) energy transfer is favored by ΔG(en) = -2100 cm(-1). Added MV(2+) as an electron transfer acceptor oxidizes the -Ru(II)*- excited state on the polymer to Ru(III), -Ru(II)*- + MV(2+) → -Ru(III)- + MV(+), and ultimately, the catalyst, by site-to-site electron transfer hopping and oxidation, [Formula: see text]. Oxidation is followed by relatively slow, diffusional back electron transfer from MV˙(+) to Ru(III) sites on the polymer chain. The mixed chromophore-catalyst polymer is a water oxidation catalyst with potential for enhanced light harvesting and water oxidation.

8.
Angew Chem Int Ed Engl ; 53(19): 4872-6, 2014 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-24683130

RESUMO

Surface-initiated, oligomeric assemblies of ruthenium(II) vinylpolypyridyl complexes have been grown within the cavities of mesoporous nanoparticle films of TiO2 by electrochemically controlled radical polymerization. Surface growth was monitored by cyclic voltammetry as well as UV/Vis and X-ray photoelectron spectroscopy. Polymerization occurs by a radical chain mechanism following cyclic voltammetry scans to negative potentials where reduction occurs at the π* levels of the polypyridyl ligands. Oligomeric growth within the cavities of the TiO2 films occurs until an average of six repeat units are added to the surface-bound initiator site, which is in agreement with estimates of the internal volumes of the pores in the nanoparticle films.

9.
ACS Nano ; 7(9): 7992-8002, 2013 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-23978313

RESUMO

Soluble graphene nanosheets, prepared by grafting polystyrene-based polymer chains from the surface of reduced graphene oxide (RGO), have been functionalized with pendant Ru(II) polypyridine chromophores. N-Hydroxysuccinimide (NHS) derivatized p-vinylbenzoic acid polymer chains were grown from methyl bromoisobutyrate initiation sites on the surface of RGO by atom transfer radical polymerization (ATRP). Deprotection of the resulting NHS polystyrene chains followed by amide coupling with the amine-derivatized Ru(II) polypyridyl complex [Ru(4-CH2NH2-4'-CH3-bpy)(bpy)2](2+) (4-CH2NH2-4'-CH3-bpy = 4-aminomethyl-4'-methyl 2,2'-bipyridine and bpy = 2,2'-bipyridine) afforded the covalently linked RGO-metallopolymer. The hybrid graphene-polymer assembly has been fully characterized with clear evidence for covalent attachment of the metallopolymer brushes to the graphene substrate. On the basis of thermal gravimetric analysis, one polymer strand is grafted to the surface of RGO for every hundred graphene carbons. The covalently linked polymer brushes feature controlled chain lengths of ∼30 repeat units with a small polydispersity index (PDI, ∼ 1.2). Photovoltaic cells based on the derivatized polymers and graphene-polymer assemblies were evaluated. The graphene-polymer assembly in the configuration, ITO/PEDOT:PSS/RGO-PSRu/PC60BM/Al, exhibited enhanced photocurrent and power conversion efficiencies (∼5 fold) relative to devices with the configuration, ITO/PEDOT:PSS/PSRu/PC60BM/Al.

10.
J Am Chem Soc ; 135(31): 11587-94, 2013 Aug 07.
Artigo em Inglês | MEDLINE | ID: mdl-23848562

RESUMO

The photodriven accumulation of two oxidative equivalents at a single site was investigated on TiO2 coloaded with a ruthenium polypyridyl chromophore [Ru(bpy)2((4,4'-(OH)2PO)2bpy)](2+) (Ru(II)P(2+), bpy = 2,2'-bipyridine, ((OH)2PO)2-bpy = 2,2'-bipyridine-4,4'-diyldiphosphonic acid) and a water oxidation catalyst [Ru(Mebimpy) ((4,4'-(OH)2PO-CH2)2bpy)(OH2)](2+) (Ru(II)OH2(2+), Mebimpy = 2,6-bis(1-methylbenzimidazol-2-yl)pyridine, (4,4'-(OH)2PO-CH2)2bpy) = 4,4'-bis-methlylenephosphonato-2,2'-bipyridine). Electron injection from the metal-to-ligand charge transfer (MLCT) excited state of -Ru(II)P(2+) (-Ru(II)P(2+)*) to give -Ru(III)P(3+) and TiO2(e(-)) was followed by rapid (<20 ns) nearest-neighbor -Ru(II)OH2(2+) to -Ru(III)P(3+) electron transfer. On surfaces containing both -Ru(II)P(2+) and -Ru(III)OH2(3+) (or -Ru(III)OH(2+)), -Ru(II)OH2(2+) was formed by random migration of the injected electron inside the TiO2 nanoparticle and recombination with the preoxidized catalyst, followed by relatively slow (µs-ms) non-nearest neighbor cross-surface electron transfer from -Ru(II)OH2(2+) to -Ru(III)P(3+). Steady state illumination of coloaded TiO2 photoanodes in a dye sensitized photoelectrosynthesis cell (DSPEC) configuration resulted in the buildup of -Ru(III)P(3+), -Ru(III)OH(2+), and -Ru(IV)═O(2+), with -Ru(IV)═O(2+) formation favored at high chromophore to catalyst ratios.


Assuntos
2,2'-Dipiridil/química , Rutênio/química , Titânio/química , Transporte de Elétrons , Nanopartículas/química , Oxirredução , Processos Fotoquímicos , Propriedades de Superfície
11.
Biopolymers ; 100(1): 25-37, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-23335165

RESUMO

The performance of dye-sensitized solar and photoelectrochemical cells is strongly dependent on the electron transfer events at the electrode-sensitizer interface. Surface-bound peptides derivatized with chromophores have not been used in dye-sensitized solar and photoelectrochemical cells, but they have properties for these applications that could be advantageous by exploiting secondary structure and the attachment of multiple chromophores. In this manuscript, we have investigated structure-property relationships for three metallopeptide-based assemblies to solution and chemically bound to nanocrystalline MO(2) (M = Ti, Zr) films. A particular interest was exploring the influence of increasing separation distance between a common chromophore, [Ru(bpy)(2) (4-Me-4'-(NHCO)bpy)](2+) , and the underlying oxide substrate on excited and ground state electron transfer. Rates of Ru(II) oxidation to Ru(III) at the interface were measured by cyclic voltammetry on fluorine-doped tin oxide and cross-surface electron transfer on TiO(2) . Excited state injection by [Ru(III) (bpy)(2) (bpy(-) )](2+) was monitored by transient absorption and time-resolved emission. There are discernible trends in the electron transfer rate data with approximated, fully extended distances between the [Ru(bpy)(2) (4-Me-4'-(NHCO)bpy)](2+) sites and the interface. However, the distance dependences that are observed are smaller than anticipated, a result consistent with a lack of ordered secondary structure in the surface-bound peptide chains and a distribution of local orientations. For the surface-bound excited states, only a small fraction undergo quenching by electron transfer to TiO(2) , presumably from those oriented near the surface.


Assuntos
Elétrons , Rutênio , Transporte de Elétrons , Estrutura Molecular , Oxirredução , Óxidos , Peptídeos
13.
ACS Appl Mater Interfaces ; 4(3): 1462-9, 2012 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-22316053

RESUMO

The photostability of [Ru(II)(bpy)(2)(4,4'-(PO(3)H(2))(2)bpy)]Cl(2) (bpy = 4,4'-bipyridine) on nanocrystalline TiO(2) and ZrO(2) films was investigated using a standard measurement protocol. Stability was evaluated by monitoring visible light absorbance spectral changes, in real time, during 455 nm photolysis (30 nm fwhm, 475 mW/cm(2)) in a variety of conditions relevant to dye-sensitized solar cells and dye-sensitized photoelectrosynthesis cells. Desorption (k(des)) and photochemical (k(chem)) processes were observed and found to be dependent upon solvent, anion, semiconductor, and presence of oxygen. Both processes are affected by oxygen with k(des) and k(photo) noticeably smaller in argon saturated solution. Desorption was strongly solvent and pH dependent with desorption rates increasing in the order: methanol (MeOH) ≈ acetonitrile (MeCN) < propylene carbonate (PC) < pH 1 ≪ pH 7. Photochemistry occurred in MeOH and PC but not in aqueous, 0.1 M HClO(4) and MeCN. The anion and solvent dependence of k(photo) strongly suggests the photoreaction involves ligand substitution initiated by population of metal centered d-d states. The relative stability of -PO(3)H(2)- versus -COOH-substituted [Ru(II)(bpy)(3)](2+) was also quantitatively established.

14.
Proc Natl Acad Sci U S A ; 106(13): 5105-10, 2009 Mar 31.
Artigo em Inglês | MEDLINE | ID: mdl-19289834

RESUMO

How do you design a peptide building block to make 2-dimentional nanowebs and 3-dimensional fibrous mats? This question has not been addressed with peptide self-assembling nanomaterials. This article describes a designed 9-residue peptide, N-Pro-Ser-Phe-Cys-Phe-Lys-Phe-Glu-Pro-C, which creates a strong fishnet-like nanostructure depending on the peptide concentrations and mechanical disruptions. This peptide is intramolecularly amphiphilic because of a single pair of ionic residues, Lys and Glu, at one end and nonionic residues, Phe, Cys, and Phe, at the other end. Circular dichroism and Fourier transform infrared spectroscopy analysis demonstrated that this peptide adopts stable beta-turn and beta-sheet structures and self-assembles into hierarchically arranged supramolecular aggregates in a concentration-dependent fashion, demonstrated by atomic force microscopy and electron microscopy. At high concentrations, the peptide dominantly self-assembled into globular aggregates that were extensively connected with each other to form "beads-on-a-thread" type nanofibers. These long nanofibers were extensively branched and overlapped to form a self-healing peptide hydrogel consisting of >99% water. This peptide can encapsulate the hydrophobic model drug pyrene and slowly release pyrene from coated microcrystals to liposomes. It can effectively stop animal bleeding within 30 s. We proposed a plausible model to interpret the intramolecular amphiphilic self-assembly process and suggest its importance for the future development of new biomaterials for drug delivery and regenerative medicine.


Assuntos
Sistemas de Liberação de Medicamentos/métodos , Nanoestruturas/química , Peptídeos/química , Animais , Feminino , Hemorragia/tratamento farmacológico , Lipossomos , Nanoestruturas/uso terapêutico , Peptídeos/uso terapêutico , Estrutura Secundária de Proteína , Pirenos/administração & dosagem , Ratos , Ratos Sprague-Dawley , Tensoativos
15.
J Pept Sci ; 14(2): 152-62, 2008 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-18196533

RESUMO

It has been found that the self-assembling peptide RADA 16-I forms a beta-sheet structure and self-assembles into nanofibers and scaffolds in favor of cell growth, hemostasis and tissue-injury repair. But its biophysical and morphological properties, especially for its beta-sheet and self-assembling properties in heat- and pH-denatured conditions, remain largely unclear. In order to better understand and design nanobiomaterials, we studied the self-assembly behaviors of RADA16-I using CD and atomic force microscopy (AFM) measurements in various pH and heat-denatured conditions. Here, we report that the peptide, when exposed to pH 1.0 and 4.0, was still able to assume a typical beta-sheet structure and self-assemble into long nanofiber, although its beta-sheet content was dramatically decreased by 10% in a pH 1.0 solution. However, the peptide, when exposed to pH 13.0, drastically lost its beta-sheet structure and assembled into different small-sized globular aggregates. Similarly, the peptide, when heat-denatured from 25 to 70 degrees C, was still able to assume a typical beta-sheet structure with 46% content, but self-assembled into small-sized globular aggregates at much higher temperature. Titration experiments showed that the peptide RADA16-I exists in three types of ionic species: acidic (fully protonated peptide), zwitterionic (electrically neutral peptide carrying partial positive and negative charges) and basic (fully deprotonated peptide) species, called 'super ions'. The unordered structure and beta-turn of these 'super ions' via hydrogen or ionic bonds, and heat Brownian motion under the above denatured conditions would directly affect the stability of the beta-sheet and nanofibers. These results help us in the design of future nanobiomaterials, such as biosensors, based on beta-sheets and environmental changes. These results also help understand the pathogenesis of the beta-sheet-mediated neuronal diseases such as Alzheimer's disease and the mechanism of hemostasis.


Assuntos
Peptídeos/química , Temperatura , Motivos de Aminoácidos , Animais , Fenômenos Biofísicos , Biofísica , Dicroísmo Circular , Homeostase , Concentração de Íons de Hidrogênio , Focalização Isoelétrica , Microscopia de Força Atômica , Modelos Moleculares , Nanoestruturas/química , Nanoestruturas/ultraestrutura , Desnaturação Proteica , Estrutura Terciária de Proteína , Coelhos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA